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1 Simple Constitutive Relations

The constitution relation between D and E in free space is

D = ε0E (1.1)

When material medium is present, one has to add the contribution to D by the
polarization density P which is a dipole density.1 Then

D = ε0E + P (1.2)

The second term above is the contribution to the electric flux due to the polar-
ization density of the medium. It is due to the little dipole contribution due to
the polar nature of the atoms or molecules that make up a medium.

By the same token, the first term ε0E can be thought of as the polarization
density contribution of vacuum. Vacuum, though represents nothingness, has
electrons and positrons, or electron-positron pairs lurking in it. Electron is
matter, whereas positron is anti-matter. In the quiescent state, they represent
nothingness, but they can be polarized by an electric field E. That also explains
why electromagnetic wave can propagate through vacuum.

For many media, it can be assumed to be a linear media. Then P = ε0χ0E

D = ε0E + ε0χ0E

= ε0(1 + χ0)E = εE (1.3)

In other words, for linear material media, one can replace the vacuum permit-
tivity ε0 with an effective permittivity ε.

In free space:

ε = ε0 = 8.854× 10−12 ≈ 10−8

36π
F/m (1.4)

The constitutive relation between magnetic flux B and magnetic field H is
given as

B = µH, µ = permeability H/m (1.5)

In free space,

µ = µ0 = 4π × 10−7 H/m (1.6)

In other materials, the permeability can be written as

µ = µ0µr (1.7)

Similarly, the permittivity for electric field can be written as

ε = ε0εr (1.8)
1Note that a dipole moment is given by Q` where Q is its charge in coulomb and ` is

its length in m. Hence, dipole density, or polarization density as dimension of coulomb/m2,
which is the same as that of electric flux D.
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2 Emergence of Wave Phenomenon, Triumph
of Maxwell’s Equations

One of the major triumphs of Maxwell’s equations is the prediction of the wave
phenomenon. This was experimentally verified by Heinrich Hertz in 1888, some
23 years after the completion of Maxwell’s theory. Then it was realized that
electromagnetic wave propagates at a tremendous velocity which is the velocity
of light. This was also the defining moment which revealed that the field of elec-
tricity and magnetism and the field of optics were both described by Maxwell’s
equations or electromagnetic theory.

To see this, we consider the first two Maxwell’s equations in vacuum or a
source-free medium.2 They are

∇×E = −µ0
∂H

∂t
(2.1)

∇×H = −ε0
∂E

∂t
(2.2)

Taking the curl of (2.1), we have

∇×∇×E = −µ0
∂

∂t
∇×H (2.3)

It is understood that in the above, the double curl operator implies ∇×(∇×E).
Substituting (2.2) into (2.3), we have

∇×∇×E = −µ0ε0
∂2

∂t2
E (2.4)

Furthermore, using the identity that

∇×∇×E = ∇∇ ·E−∇2E (2.5)

and that ∇ ·E = 0 in a source-free medium, we have

∇2E− µ0ε0
∂2

∂t2
E = 0 (2.6)

To see the simplest form of wave emerging in the above, we can let E =
x̂Ex(z, t) so that ∇ · E = 0 satisfying the source-free condition. Then (2.6)
becomes

∂2

∂z2
Ex(z, t)− µ0ε0

∂2

∂t2
Ex(z, t) = 0 (2.7)

Eq. (2.7) is known mathematically as the wave equation. It can also be written
as

∂2

∂z2
f(z, t)− 1

c20

∂2

∂t2
f(z, t) = 0 (2.8)

2Since the third and the fourth Maxwell’s equations are derivable from the first two.
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where c20 = (µ0ε0)−1. Eq. (2.8) can also be factorized as(
∂

∂z
− 1

c0

∂

∂t

)(
∂

∂z
+

1

c0

∂

∂t

)
f(z, t) = 0 (2.9)

or (
∂

∂z
+

1

c0

∂

∂t

)(
∂

∂z
− 1

c0

∂

∂t

)
f(z, t) = 0 (2.10)

The above implies that we have(
∂

∂z
+

1

c0

∂

∂t

)
f+(z, t) = 0 (2.11)

or (
∂

∂z
− 1

c0

∂

∂t

)
f−(z, t) = 0 (2.12)

Equation (2.11) and (2.12) are known as the one-way wave equations or ad-
vective equations. From the above factorization, it is seen that the solutions of
these one-way wave equations are also the solutions of the original wave equation
given by (2.8). Their general solutions are then

f+(z, t) = F+(z − c0t) (2.13)

f−(z, t) = F−(z + c0t) (2.14)

Eq. (2.13) constitutes a right-traveling wave function of any shape while (2.14)
constitutes a left-traveling wave function of any shape. Since Eqs. (2.13) and
(2.14) are also solutions to (2.8), we can write the general solution to the wave
equation as

f(z, t) = F+(z − c0t) + F−(z + c0t) (2.15)

This is a wonderful result since F+ and F− are arbitrary functions of any shape
(see Figure 1); they can be used to encode information for communication!
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Figure 1:

Furthermore, one can calculate the velocity of this wave to be

c0 = 299, 792, 458m/s ' 3× 108m/s (2.16)

where c0 =
√

1/µ0ε0.
Maxwell’s equations (2.1) implies that E and H are linearly proportional to

each other. Thus, there is only one independent constant in the wave equation,
and the value of µ0 is defined to be 4π × 10−7 henry m−1, while the value of
ε0 has been measured to be about 8.854 × 10−12 farad m−1. Now it has been
decided that the velocity of light is defined to be the integer given in (2.16). A
meter is defined to be the distance traveled by light in 1/(299792458) seconds.
Hence, the more accurate that unit of time or second can be calibrated, the
more accurate can we calibrate the unit of length or meter.
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3 Static Electromagnetics

When the fields are not time varying, namely that ∂/∂t = 0, we arrive at the
static Maxwell’s equations, namely

∇×E = 0 (3.1)

∇×H = J (3.2)

∇ ·D = % (3.3)

∇ ·B = 0 (3.4)

Notice the the electrostatic field system is decoupled from the magnetostatic
field system. However, in a resistive system where

J = σE (3.5)

the two systems are coupled again. This is known as resistive coupling between
them. But if σ → ∞, in the case of a perfect conductor, or superconductor,
then for a finite J, E has to be zero. The two systems are decoupled again.

Also, one can arrive at the equations above by letting µ0 → 0 and ε0 → 0. In
this case, the velocity of light becomes infinite, or retardation effect is negligible.
In other words, there is no time delay for signal propagation through the system
in the static approximation.

3.1 Electrostatics

We see that Faraday’s law in the static limit is

∇×E = 0 (3.6)

One way to satisfy the above is to let E = −∇Φ because of the identity ∇×∇ =
0.3 Alternatively, one can assume that E is a constant. But we usually are
interested in solutions that vanish at infinity, and hence, the latter is not a
viable solution. Therefore, we let

E = −∇Φ (3.7)

3.1.1 Example

Fields of a sphere of uniform charge density ρ:
Assuming that Φ|r=∞ = 0, what is Φ at r ≤ a? And Φ at r > a?

3.2 Poisson’s Equation

As a consequence of the above,

∇ ·D = %⇒ ∇ · εE = %⇒ −∇ · ε∇Φ = % (3.8)

3One an easily go through the algebra to convince oneself of this.
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Figure 2:

In the last equation above, if ε is a constant of space, or independent of r,
then one arrives at the simple Poisson’s equation, which is a partial differential
equation

∇2Φ =− %

ε
(3.9)

Here,

∇2 = ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

For a point source, we know that

E =
q

4πεr2
r̂ = −∇Φ (3.10)

From the above, we deduce that4

Φ =
q

4πεr
(3.11)

Therefore, we know the solution to Poisson’s equation (3.9) when the source
% represents a point source. Since this is a linear equation, we can use the
principle of linear superposition to find the solution when % is arbitrary.

A point source located at r′ is described by a charge density as

%(r) = qδ(r− r′) (3.12)

where δ(r−r′) is a short-hand notation for δ(x−x′)δ(y−y′)δ(z−z′). Therefore,
from (3.9), the corresponding partial differential equation for a point source is

∇2Φ(r) = −qδ(r− r′)

ε
(3.13)

4One can always take the gradient or ∇ of Φ to verify this.
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The solution to the above equation, from Coulomb’s law, has to be

Φ(r) =
q

4πε|r− r′|
(3.14)

where (3.11) is for a point source at the origin, but (3.14) is for a point source
located and translated to r′.

3.3 Static Green’s Function

Let us define a partial differential equation given by

∇2g(r− r′) = −δ(r− r′) (3.15)

The above is similar to Poisson’s equation with a point source on the right-hand
side as in (3.13). But such a solution, a response to a point source, is called the
Green’s function.5 By comparing equations (3.13) and (3.15), then making use
of (3.14), it is deduced that the Green’s function is

g(r− r′) =
1

4π|r− r′|
(3.16)

An arbitrary source can be expressed as

%(r) =

˚
V

dV ′%(r′)δ(r− r′) (3.17)

The above is just the statement that an arbitrary charge distribution %(r) can
be expressed as a linear superposition of point sources δ(r−r′). Using the above
in (3.9), we have

∇2Φ(r) =− 1

ε

˚
V

dV ′%(r′)δ(r− r′) (3.18)

We can let

Φ(r) =
1

ε

˚
V

dV ′g(r− r′)%(r′) (3.19)

By substituting the above into the left-hand side of (3.18), exchanging order of
integration and differentiation, and then making use of equation (3.9), it can
be shown that (3.19) indeed satisfies (3.11). The above is just a convolutional
integral. Hence, the potential Φ(r) due to an arbitrary source distribution %(r)
can be found by using convolution, namely,

Φ(r) =
1

4πε

˚
V

%(r′)

|r− r′|
dV ′ (3.20)

In a nutshell, the solution of Poisson’s equation when it is driven by an arbitrary
source %, is the convolution of the source with the static Green’s function, a point
source response.

5George Green (1793-1841), the son of a Nottingham miller, was self-taught, but his work
has a profound impact in our world.
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3.4 Laplace’s Equation

If % = 0, or if we are in a source-free region,

∇2Φ =0 (3.21)

which is the Laplace’s equation. Laplace’s equation is usually solved as a bound-
ary value problem. In such a problem, the potential Φ is stipulated on the
boundary of a region, and then the solution is sought in the intermediate region
so as to match the boundary condition.

Examples of such boundary value problems are given below.

3.4.1 Example 1

A capacitor has two parallel plates attached to a battery, what is E field inside
the capacitor?

First, one guess the electric field between the two parallel plates. Then one
arrive at a potential Φ in between the plates so as to produce the field. Then
the potential is found so as to match the boundary conditions of Φ = V in the
upper plate, and Φ = 0 in the lower plate. What is the Φ that will satisfy the
requisite boundary condition?

Figure 3:

3.4.2 Example 2

A coaxial cable has two conductors. The outer conductor is grounded and hence
is at zero potential. The inner conductor is at voltage V . What is the solution?

For this, one will have to write the Laplace’s equation in cylindrical coordi-
nates, namely,

∇2Φ =
1

ρ

∂

∂ρ

(
ρ
∂Φ

∂ρ

)
+

1

ρ2
∂2Φ

∂φ2
= 0 (3.22)

In the above, we assume that the potential is constant in the z direction, and
hence, ∂/∂z = 0, and ρ, φ, z are the cylindrical coordinates. By assuming axi-
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symmetry, we can let ∂/∂φ = 0 and the above becomes

∇2Φ =
1

ρ

∂

∂ρ

(
ρ
∂Φ

∂ρ

)
= 0 (3.23)

Show that Φ = A ln ρ + B is a general solution to Laplace’s equation in
cylindrical coordinates inside a coax. What is the Φ that will satisfy the requisite
boundary condition?

Figure 4:
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